6 N ov 2 00 6 Lie algebras : Classification , Deformations and Rigidity

نویسنده

  • Michel GOZE
چکیده

In the first section we recall some basic notions on Lie algebras. In a second time w e study the algebraic variety of complex n-dimensional Lie algebras. We present different notions of deformations : Gerstenhaber deformations, pertubations, valued deformations and we use these tools to study some properties of this variety. Finaly we introduce the concept of rigidity and we present some results on the class of rigid Lie algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 38 6 v 1 [ m at h . R A ] 1 3 N ov 2 00 6 Quasi Q n - filiform Lie algebras ∗

In this paper we explicitly determine the derivation algebra, automorphism group of quasi Qn-filiform Lie algebras, and applying some properties of root vector decomposition we obtain their isomorphism theorem. AMS Classification: 17B05; 17B30

متن کامل

ar X iv : m at h / 06 11 64 6 v 1 [ m at h . R A ] 2 1 N ov 2 00 6 NATURALLY GRADED 2 - FILIFORM LEIBNIZ ALGEBRAS

The Leibniz algebras appear as a generalization of the Lie algebras [8]. The classification of naturally graded p-filiform Lie algebras is known [3], [4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0 (trivial) and p = 1 [1]. In this work we get the classification of naturally graded no...

متن کامل

ar X iv : m at h / 06 11 83 1 v 1 [ m at h . R A ] 2 7 N ov 2 00 6 CLASSIFICATION OF 4 - DIMENSIONAL NILPOTENT COMPLEX

The Leibniz algebras appeared as a generalization of the Lie algebras. In this work we deal with the classification of nilpotent complex Leibniz algebras of low dimensions. Namely, the classification of nilpotent complex Leibniz algebras dimensions less than 3 is extended to the dimension four.

متن کامل

2 8 N ov 2 00 8 On the deformation theory of structure constants for associative algebras

Algebraic scheme for constructing deformations of structure constants for associative algebras generated by a deformation driving algebras (DDAs) is proposed. An ideal of left divisors of zero plays a central role in this construction. Deformations of associative commutative three-dimensional algebras with the DDA being a three-dimensional Lie algebra and their connection with integrable system...

متن کامل

N ov 2 00 6 Conjugacy of Cartan subalgebras of complex finite dimensional

In the present work the properties of Cartan subalgebras and their connection with regular elements in finite dimensional Lie algebras are extended to the case of Leibniz algebras. It is shown that Cartan subalgebras and regular elements of a Leibniz algebra correspond to Cartan subalgebras and regular elements of a Lie algebra by a natural homomorphism. Conjugacy of Cartan subalgebras of Leibn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006